EN

Operation Manual

Inverter Drive System 2.2 A - 32 A

LUJ

Sizes (BG)

CDD32.003-HF CDD32.004-HF

CDD32.006-HF CDD32.008-HF CDD34.003-HF CDD34.005-HF

CDD34.006-HF

BG2

BG3 7,8...10,0A

CDD34.008-HF CDD34.010-HF

CDD34.014-HF CDD34.017-HF

BG5 24...32A

CDD34.024-HF CDD34.032-HF

CDD3000-HF Operation Manual

We reserve the right to make technical changes.

Dear user

StepActionComment1This Operation Manual will enable you
to install and commission the
CDD3000-HF drive system very
quickly and easily.Guide to quick-starting2Simply follow the step-by-step tables
in sections 2/3/4.
Experience "Plug 'n Play" with the
CDD3000-HF.And away you go!

Signposts

Overview Documentation

If you want more information on the drive solutions presented here and on the full scope of software features of the drive system, please refer to the **CDD3000 Application Manual**. You can order the following documents from us, or download them free of charge from our website at www.lust-tec.de:

Pictograms

Attention! Misoperation may result in damage to the drive or malfunctions.

Danger from electrical tension! Improper behaviour may endanger human life.

Danger from rotating parts! The drive may start running automatically.

Note: Useful information.

Safety

1

2

1.1	Measures for your safety	1-1
1.2	Intended use	1-2
1.3	Responsibility	1-2

Mechanical installation

2.1	Notes for operation	2-1
2.2	Mounting variants	2-1
2.3	Wall mounting	2-3
2.4	Cold plate	2-5
2.5	Push-through heat sink (Dx.x)	2-8

3 Installation

3.1	Overview	3-2
3.2	Grounding lead connection	3-4
3.3	Motor connection	
3.3.1	Motor phase connection	3-6
3.3.2	Motor temperature monitoring	3-7
3.3.3	Holding brake (if installed)	3-8
3.3.4	production of encoder cables	
3.4	Mains connection	3-13
3.5	Braking resistor (RB)	3-16
3.6	Control connections	3-17
3.6.1	Specification of control connections	3-18
3.6.2	Standard terminal assignment	
3.6.3	Isolation	
3.7	EMC compliant installation	3-22
3.8	Encoder simulation - Master encoder input	3-23
3.8.1	Encoder simulation	3-23
3.8.2	Master encoder	

4 Commissioning

	C C	
4.1	Choice of commissioning	4-2
4.2	Serial commissioning	4-2
4.2.1	Serial commissioning with DRIVEMANAGER	4-2
4.2.2	Serial commissioning with KeyPad	4-4
4.3	Initial commissioning	4-6
4.3.1	Selecting the unit for speed values	4-8
4.3.2	Selecting preset solution	
4.3.3	Setting the motor and encoder	4-11
4.3.4	Making basic settings	
4.3.5	Setting function parameters	4-14
4.3.6	Safety functions	4-15
4.3.7	Motor filter	4-16
4.3.8	Switching frequency	4-16
4.3.9	Saving settings	4-17
4.4	Test run	4-18
4.5	Operation with DRIVEMANAGER	4-22
4.6	Operation with KeyPad KP200	4-24

Diagnosis/Fault rectification

5.1	LEDs	5-1
5.2	Fault response	5-2
5.3	Error messages	5-3
5.4	Resetting errors	5-4
5.5	User errors in KeyPad operation	5-5
5.6	User errors in SMARTCARD operation	5-5
5.7	Errors in power switching	5-5
5.8	Reset	5-6

A Appendix

A.1	Technical data	A-2
A.2	Ambient conditions	A-8
A.3	Project planning notes, "Cold plate"	A-9
A.4	Change in system load through use of a line choke	A-10
A.5	UL approbation	A-12
A.6	Layout	A-14

Index

В

1.1 Measures for your safety

1 Safety

The CDD3000-HF servo drives are quick and safe to handle. For your own safety and for the safe functioning of your device, please be sure to observe the following points:

Read the Operation Manual first!

Follow the safety instructions!

Electric drives are dangerous:

- Electrical voltages > 230 V/460 V: Dangerously high voltages may still be present 10 minutes after the power is cut. You should therefore always check that no power is being applied!
- · Rotating parts
- Hot surfaces

Your qualification:

- In order to prevent personal injury and damage to property, only personnel with electrical engineering qualifications may work on the device.
- The qualified personnel must familiarize themselves with the Operation Manual (refer to IEC364, DIN VDE0100).
- Knowledge of national accident prevention regulations (e.g. VBG 4 in Germany)

During installation observe the following instructions:

- Always comply with the connection conditions and technical specifications.
- Comply with the standards for electrical installations, such as regarding wire cross-section, grounding lead and ground connections.
- Do not touch electronic components and contacts (electrostatic discharge may destroy components).

DE EN

5

1

1.2 Intended use Drive controllers are components for installation into electric systems or machines.

When installed in machines the commissioning of the drive controller (i. e. startup of intended operation) is prohibited, unless it has been ascertained that the machine fully complies with the regulations of the EC-directive 98/37/EC (Machine Directive); compliance with EN 60204 is mandatory.

Commissioning (i. e. starting inteded operation) is only permitted when strictly complying with EMC-directive (89/336/EEC).

The CDD3000-HF complies with the low voltage directive 73/ 23/EEC

For the drive controller the harmonized standards of series EN 50178/ DIN VDE 0160 in connection with EN 60439-1/ VDE 0660 part 500 and EN 60146/ VDE 0558 are applied.

If the drive controller is used in special applications, e. g. in areas subject to explosion hazards, the applicable regulations and standards (e. g. in Ex-environments EN 50014 "General provisions" and EN 50018 "Flameproof housing") must be strictly observed.

Repairs must only be carried out by authorized repair workshops. Unauthorised opening and incorrect intervention could lead to physical injury or material damage. The warranty granted by LUST will become void.

1.3 Responsibility Electronic devices are never fail-safe. The company setting up and/or operating the machine or plant is itself responsible for ensuring that the drive is rendered safe if the device fails.

EN 60204-1/DIN VDE 0113 "Safety of machines", in the section on "Electrical equipment of machines", stipulates safety requirements for electrical controls. They are intended to protect personnel and machinery, and to maintain the function capability of the machine or plant concerned, and must be observed.

An emergency stop system does not necessarily have to cut the power supply to the drive. To protect against danger, it may be more beneficial to keep individual drives running or to initiate specific safety sequences. Execution of the emergency stop measure is assessed by means of a risk analysis of the machine or plant, including the electrical equipment in accordance with DIN EN 1050, and is determined by selecting the circuit category in accordance with DIN EN 954-1 "Safety of machines - Safety-related parts of controls".

2

Comment

DE EN

Mechanical installation 2

2.1	Notes for operation	2-1
2.2	Mounting variants	2-1
2.3	Wall mounting	2-3
2.4	Cold plate	2-5
2.5	Push-through heat sinks (Dx.x)	2-8

no aggressive or conductive substances are in the immediate vicinity

no drill chippings, screws or foreign bodies drop into the device

2.1 Notes for operation

Mounting 2.2 variants

1		•	ate to find out the your drive controller.	The mounting variant their mode of cooling	
Name	plate		Mounting and cooling	g variant	Continued on
CDD3H	IF, W x.x	Wall mounting			Page 2-3
CDD3H	IF, C x.x	Cold plate	Wx.x		Page 2-5
CDD3H	IF, D x.x	Push- through heat sink	C C	Dx.x	Page 2-8

Mounting and cooling variants

Please ensure that ...

• ٠

•

Step

· no damp enters the device

the vent openings are not covered over.

Action

The device may otherwise be damaged.

Attention: When mounting drive controller for highspeed drives sizes BG 1 and BG 2, version C x.x (cold plate) directly on the switch cabinet wall, a clearance A must be maintained. This clearance A must be sufficient for the screwdriver to be inserted.

Note:

If the installation prevents the clearance A from being maintained, the mounting set CDD (order no. 0927.0017) is available. See Order Catalogue for highspeed drive systems (order no. 1000.24B.0).

The clearance to devices of different power classes must be at least 20 mm. The minimum mounting clearance of the other devices must also be taken into account.

2.3 Wall mounting

Step	Action	Comment
1	Mark out the position of the tapped holes on the backing plate. Cut a tap for each fixing screw in the backing plate.	Dimensional drawings/hole spacing see Table 2.1. The tapping area will provide you with good, full-area contact.
2	Mount the drive controller for highspeed drives vertically on the backing plate.	Pay attention to the mounting clearances! The contact surface must be metallically bright.
3	Mount the other components, such as the mains filter, line choke etc., on the backing plate.	Mains filter max. 20 cm below the drive controller for highspeed drives
4	Continue with electrical installation in section 3.	

Figure 2.1 Mounting clearances (see Table 2.1)

Note the following points:

- Air must be able to flow unhindered through the device.
- The backing plate must be well grounded.
- The best result for effective EMC installation is attained with a chromated or galvanized backing plate. If backing plates are varnished, the coating must be removed in the area of the contact surface!

DE EN

2

3

4

2.4 Cold plate

Step	Action	Comment	
1	Mark out the positions of the tapped holes on the backing plate or the cooler. Cut a tap for each fixing screw in the backing plate.	Dimensional drawings/hole spacing see Table 2.2. The tapping area will provide you with good, full-area contact.	
2	Clean the contact surface and coat it thinly and evenly with heat transfer compound .	The contact surface must be metallically bright.	
3	Mount the drive controller for highspeed drives vertically on the backing plate or cooler. Tighten all screws to the same tightness.	Pay attention to the mounting clearances! Size of cooling surface see Table 2.3.	
4	Mount the other components, such as the mains filter, line choke etc., on the backing plate.	Mains filter max. 20 cm below the drive controller for highspeed drives	
5	Continue with electrical installation in section 3.		
		G NOT BOOM NOTE: With ventilator grille	

Figure 2.2 Mounting clearances (see Table 2.2)

A

CDD3HF <u>,Cx.x</u>	BG1	BG2	BG3	BG4	BG5
Weight [kg]	1.6	2.3	3.2	5.2	6.4
B (width)	70	70	100	150	200
H (height)	215	240		300	1
H (overall height with ventilator)	235	260	-	-	-
D (depth)	120	145		150	
A	5	0	85	135	185
C	205	230		200	
C (with mounting set)	230	255	-	-	-
C1	-	_		100	
DØ	Ø	4.8		Ø 5.5	
Screws	4 x	M4		6 x M5	
E ¹⁾	()		0	
E1 (with module) ¹⁾	45 15				
F ¹⁾	100 ²⁾				
G ¹⁾	≥ 300				
		62 		BG3 BG4 BG5 B	
1) Mounting clearances s 2) Additionally allow enou		bottom for the	bending radii of t	the connecting ca	ables.

 Table 2.2
 Dimensional drawings: Cold plate (dimensions in mm)

Note the following points:

Cooling can be attained either by a sufficiently large backing plate (see Table 2.3) or by an additional cooler. The cooler must be mounted centrally behind the hottest area (1) of the device. See also "Project planning notes, "Cold plate"" in Appendix A.3.

• Required evenness of contact surface = 0.05 mm, maximum roughness of contact surface = roughness factor 6.3

Size	Device rated power	drive controller for highspeed drives	P _V [W] at 4/ 8-16 kHz	R _{thK} ³⁾ [K/W]	Backing plate (unvarnished steel min. cooling area	Ambient temperature		
BG1	1.0 kVA	CDD32.003-HF,Cx.x	49 / 52 W	0.05	None	45°C		
DGT	1.6 kVA	CDD32.004-HF,Cx.x	63 / 70 W	0.05	650x100mm = 0.065m ²	45°C ¹⁾ , 40°C ²⁾		
	2.2 kVA	CDD32.006-HF,Cx.x	90 / 97 W	0.05	$650x460mm = 0.3m^2$ $45^{\circ}C^{1)}, 40^{\circ}C^{1}$			
BG2	2.8 kVA	CDD32.008-HF,Cx.x	110 / 120 W	0.05	650x460mm = 0.3m ²	45°C ¹⁾ , 40°C ²⁾		
DG2	1.5 kVA	CDD34.003-HF,Cx.x	70 / 85 W	70 / 85 W 0.05 None		45°C ¹⁾ , 40°C ²⁾		
	2.8 kVA	CDD34.005-HF,Cx.x	95 / 127 W	0.05	$650x460mm = 0.3m^2$	45°C ¹⁾ , 40°C ²⁾		
	3.9 kVA	CDD34.006-HF,Cx.x	121 / 163 W	0.05				
BG3	5.4 kVA	CDD34.008-HF,Cx.x	150 / 177 W	0.03				
DUS	6.9 kVA	CDD34.010-HF,Cx.x	187 / 222 W	0.03	An additional cooler is require	ed to supply		
BG4	9.7 kVA	CDD34.014-HF,Cx.x	225 / 283 W	0.02	adequate cooling.			
004	11.8 kVA	CDD34.017-HF,Cx.x	270 / 340 W	0.02	For project planning notes se	e Appendix A.3.		
BG5	16.6 kVA	CDD34.024-HF,Cx.x	330 / 415 W	0.015				
Dub	22.2 kVA	CDD34.032-HF,Cx.x	415 / 525 W	0.015				

3) Thermal resistance between active cooling area and cooler

Table 2.3 Required cooling with cold plate

Note the following points:

- The backing plate must be grounded over a large area.
- The best result for effective EMC installation is attained with a chromated or galvanized backing plate. If backing plates are varnished, the coating must be removed in the area of the contact surface!

EN

2 Mechanical installation

LUST

2.5 Push-through heat sink (Dx.x)

Step	Action	Comment
1	Mark out the positions of the tapped holes and the breakthrough on the backing plate. Cut a tap for each fixing screw in the backing plate and cut out the breakthrough.	Dimensional drawings/hole spacing see Table 2.5. The tapping area will provide you with good, full-area contact.
2	Mount the drive controller for high-speed drives vertically on the backing plate. Tighten all screws to the same tightness.	Pay attention to the mounting clearances! The mounting seal must contact flush on the surface.
3	Mount the other components, such as the mains filter, line choke etc., on the backing plate.	Mains filter max. 20 cm below the drive controller for highspeed drives
4	Continue with electrical installation in section 3.	

Note the following points:

• Distribution of power loss:

		BG3	BG4	BG5
Power loss	Outside (3)	70%	75%	80%
FUWEI 1055	Inside (4)	30%	25%	20%
Protection	Heat sink side (3)	IP54	IP54	IP54
Protection	Machine side (4)	IP20	IP20	IP20

• The all-round mounting collar must be fitted with a seal. The seal must fit flush on the surface and must not be damaged.

(1) Seal(2) Tapped hole forEMC contact(3) Outside(4) Inside

- The backing plate must be well grounded.
- The best result for effective EMC installation is attained with a chromated or galvanized backing plate. If backing plates are varnished, the coating must be removed in the area of the contact surface!

2 Mechanical installation

LUST

Figure 2.3 Mounting clearances (see Table 2.5)

Table 2.4

Breakthrough for push-through heat sink (dimensions in mm)

DE EN

4

For further ambient conditions, see appendix A.2

CDD3HF <u>,Dx.x</u>	BG3	BG4	BG5
Weight [kg]	4.6	6.7	7.4
B (width)	110	160	210
H (height)		340	
D (depth)	T1 138	s, T2 80	T1 138, T2 135
A	90	140	190
A1	-	80	100
С		320	
C1		200	
DØ	Ø 4.8	Ø 4.8	Ø 4.8
Screws	8 x M4	10 x M4	10 x M4
E ¹⁾		10	
E1 (with module) ¹⁾		10	
F ¹⁾		100 ²⁾	
G ¹⁾		<u>≥</u> 300	
0			+
 Mounting clearances, s Additionally allow enough 	ee Figure 2.3 gh space at the bottom for 1	the bending radii of the cor	nnecting cables.
Table 2.5 Dir (dir	nensional drawings: mensions in mm)	push-through heat	sink

1

2

3

4

DE EN

3 Installation

3.1	Overview3-2	2
3.2	Grounding lead connection3-4	4
3.3	Motor connection3-	5
3.3.1	Motor phase connection3-6	6
3.3.2	Motor temperature monitoring	7
3.3.3	Holding brake (if installed)	B
3.3.4	production of encoder cables	B
3.4	Mains connection3-1	3
3.5	Braking resistor (RB)3-10	6
3.6	Control connections3-12	7
3.6.1	Specification of control connections	8
3.6.2	Standard terminal assignment	
3.6.3	Isolation3-2	
3.7	EMC compliant installation3-22	2
3.8	Encoder simulation - Master encoder input3-23	3
3.8.1	Encoder simulation3-23	3
3.8.2	Master encoder3-2	

Attention: Installation must only be carried out by qualified electricians who have undergone instruction in the necessary accident prevention measures.

3.1 Overview

The terminal layout for all sizes is presented in Appendix A7.

3 Installation

3 Installation

LUST

For all shielded connections a cable type with double copper braiding with 60-70% coverage must be used.

	Кеу	Explanation
(1)	Line choke ¹⁾	Reduces the voltage distortions in the system
(2)	Mains filter ^{1) 2)}	Suppresses line-borne interference emission
(3)	Braking resistor ¹⁾	Required for fast braking
(4)	Control connections X2	Connection, see section 3.6
(5)	Motor PTC connection X3	For thermal monitoring of the motor, see section 3.3.2
(6)	RS232 connection X4	For operation with KeyPad/DriveManager, see section 4.6/4.5
(8)	Software name plate	Indicates the shipped software status
(9)	Name plate	Contains the hardware data and the serial number
(10)	Encoder simulation/master encoder X5, TTL encoder	Connection and specification, see section 3.8
(11)	Resolver connection X6	Connection and specification, see section 3.3.3
(12)	opt. Encoder connection X7	Connection and specification, see section
(13)	motor filter ¹⁾	Reduces harmonic current waves

1) For supplementary components see Order Catalogue for highspeed drive systems.

2) In CDD3000-HF drive controllers up to 11.8 kVA (BG1 to BG4) the mains filter is built-in.

2

3

4

5

Α

3.2 **Grounding lead** connection

Step	Action	Note: PE mains connection to VDE 0100 part 540
	Ground every CDD3000-HF drive	
1	controller! Connect terminal X1 / 🚖 (next to the power connection) in star configuration to the PE-rail (main ground) in the switch cabinet.	<i>Mains connection < 10 mm</i> ² . Grounding lead cross-section min. 10 mm ² or use 2 wires with cross- section of mains leads.
2	Also connect the grounding lead connections of all other components, such as the line choke, filter, heat sink, etc., in star configuration , to the PE-rail (main ground) in the switch cabinet.	Mains connection > 10 mm ² : Use grounding lead (PE) cross section according to cross-section of mains leads.
Figure 3.	1 Star configuration layout of the gro	unding lead

Figure 3.1 Star configuration layout of the grounding lead

Note the following points:

- The grounding lead must be laid out in star configuration to conform to the EMC standards.
- The backing plate must be well grounded.
- The motor cable, mains lead and control cable must be laid ٠ separately from each other.
- Avoid loops, and lay cable over short distances.
- The operational leakage current is > 3.5 mA.

3 Installation

3.3 Motor connection

Step	Action	Comment	Section
1	Define the wire cross-section dependent on the maximum current and ambient temperature.	Wire cross-section to VDE0100, part 523, see section 3.4 "Mains connection"	3.3.1
	Wire the motor phases U, V, W by way of a shielded cable and ground the motor to X1 directly next to the UVW terminals.	Mount shield at both ends to reduce interference emission.	
2	Wire the temperature sensor (if fitted) with separately shielded wires or with wires routed in the motor cable.	Mount shield at both ends to reduce interference emission.	3.3.2
3	Wire the holding brake (if fitted) with separately shielded wires or with wires routed in the motor cable.	Mount shield at both ends to reduce interference emission.	3.3.3
4	Connect the encoder by a ready made-up cable to the CDD3000-HF drive controller.	Various ready made-up cables are available for connection of the encoder.	
5	Wire the external ventilator unit (if fitted) with separate wires.	An adequate flow of cooling air is required.	

Note the following points:

- Always use shielded cables to connect the motor.
- Shield contact on the CDD3000-HF drive controller:
 - For CDD3000-HF drive controller BG1 ... 5 (1.0 ... 22.2 kVA) there is an accessory shield (ST02, ST04 or ST05) permitting simple clip mounting with all-round contact.
- The motor at the CDD3000-HF output may be shut off by means of a contactor or motor circuit-breaker. The CDD3000-HF drive controller cannot be damaged in the process. A error message may occur however, see section 5 "Diagnosis/Fault rectification"

If you have any further queries refer to the "Helpline" (see page 5-3).

3.3.1 Motor phase connection

Note:

The CDD3000-HF drive controller drives are protected against shorting and ground faults at the terminals when in operation. In the event of a short-circuit or ground fault in the motor cable, the power stage is disabled and an error message is delivered.

phases U, V and W!If the motor phases are incorrectly connected, the CDD3000-HF drive controller will lose control over the motor and the motor may buck or accelerate uncontrollably ("run away"). The entire system may be damaged as a result! There may consequently also be danger to human life.

Attention: Do not confuse the motor and unit ends of the motor

Caution - Danger to life: Do not touch the motor terminals! There may also be dangerously high voltages present at motor terminals U, V and W in the "power stage off" condition!

Figure 3.2 Connection of motor phases

3.3.2 Motor temperature monitoring

Figure 3.3 Connection of the temperature sensor

For thermal monitoring of the motor winding, the temperature sensors specified in Table 3.1 can be connected to terminals X3 / ϑ - and ϑ +.

Sensor	No PTC used	Standard PTC	Linear voltage evaluation	TSS, thermostatic
Tech. data				circuit-breaker
Usable type	-	PTC based on DIN44082	KTY84, yellow	Klixon
Parameters 330-MOPTC =	0FF	DIN	KTY	TSS
Measurement voltage U _{MAX}	-	-	12 V	-

Table 3.1Motor temperature monitoring specification

Attention:Contrary to DIN VDE 0660-303 (short circuit dedection< 20 Ω) the CDD3000-HF will note a short circuit at < 50 Ω .

For commissioning the correct type of temperature sensor used in the connected motor must be set up. This measure is not necessary if a matching motor data set is available.

1

3

4

3 Installation

3.3.3 Holding brake (if installed)

The holding brake is actuated via the digital output OSD03 at terminal X2. In the factory setting the wire-break and short-circuit shut-off is active by default. You can disable it by way of parameter 469_03CFL or from the DRIVEMANAGER menu by choosing > Digital outputs > Wire-break monitor.

Function		Symbol	Value		
•	Tunction		min.	typ	max.
Input:	Voltage supply	V _{IN}	21.6 V	24 V	26.4 V
X2: 18 (VCC03) X2: 19 (GND03)	Current consumption	I _{IN}	-	-	2.1 A
Output:	Output voltage	V _{OUT}	-	V _{IN}	-
X2: 20 (OSD03)	Output current	۱ _L	-	-	2.0 A
Monitoring	Cable break shut-off	I _{L(OL)}	-	-	150 mA
function (shutdown)	Short circuit shut-off	I _{L(SCr)}	-	4 A	-
Ambient temper	ature maximum 45°C, a	bove that the ma	ximum outpu	ut current is	reduced.

Table 3.2Technical data, output OSD03

At a holding brake current consumption > 2 A a relay should be inserted between OSD03 and the holding brake.

3.3.4 production of encoder cables

This section is intended for users of third-party motors. Ready made-up encoder cables in various lengths are available for connection of servomotors from the LUST range.

Resolver

Note:

With the CDD3000-HF drive controller, resolvers to the following specification can be evaluated:

Function	Value
Number of poles	2 - 8 (permissible number of poles: 2, or equal to number of motor poles)
Input voltage	7 V _{eff} ; 4 - 20 kHz
Input current	max. 65 mA
Transformer ratio	0.5 <u>+</u> 10%
Recommended resolver	Siemens V23401-D1001-B101 or derivatives

Table 3.3 Resolver specification

Which resolver?

Connection

Plug

Cable type

Pin assignment

3 Installation

			В
Figure 3.4 Re	solver cable		
Connector A (drive controller):D-Sul	b 9-pin plug, meta	l housing
Connector B (r		o motor manufacti F servomotors: sig	
		.g. Interconnectror	
	compatible, e.g. Inter app Unitronic FD CP		
You can enter	your custom assignm	ent in the columns	s for connector B.
Connector A	Function	Connector B	Wire colour
Connector A CDD3000-HF-X6			Wire colour
CDD3000-HF-X6			
CDD3000-HF-X6 1	SIN+ (S2)		
CDD3000-HF-X6 1 2	SIN+ (S2) SIN- (S4)		
CDD3000-HF-X6 1 2 3	SIN+ (S2) SIN- (S4) COS+ (S1)		
CDD3000-HF-X6 1 2 3 4	SIN+ (S2) SIN- (S4) COS+ (S1)		
CDD3000-HF-X6 1 2 3 4 5	SIN+ (S2) SIN- (S4) COS+ (S1) GND REF+ (R1)		
CDD3000-HF-X6 1 2 3 4 5 6	SIN+ (S2) SIN- (S4) COS+ (S1) GND REF+ (R1) (8 kHz, approx. 7 V AC)		
CDD3000-HF-X6 1 2 3 4 5 6 7	SIN+ (S2) SIN- (S4) COS+ (S1) GND REF+ (R1) (8 kHz, approx. 7 V AC) REF- (R2) (GND)		

Sinus/Cosinus encoder

With the drive controller the following rotary encoders can be evaluated:

DE EN

LUST		3 Installation
Which encoders?	U _V = 5 V <u>+</u> 5%, I _{MAX} • Heidenhain sine/cos 25 bit and Multiturn ECN1313))	ers from various manufacturers with zero pulse, $_{c}$ = 150 mA (e.g. Heidenhain ERN1381, ROD486) sine encoder with SSI interface (Singleturn 13 or 25 bit), U _V = 5 V ±5% , I _{MAX} = 150 mA (e.g.
	Multiturn), $U_V = 8 V$	encoder with HIPERFACE [®] interface (Single and ′, I _{MAX} = 100 mA (e.g. SRS50, SRM50) oder e.g. Lenord & Bauer GEL 244-KN
Connection		is connected via plug connection X7 to the
	Figure 3.5 Encoder cabl	e
Connector	Connector A (HF-drive controller)	D-Sub 15-pin plug, High-Density (as VGA plug), metal housing
	Connector B (motor):	Custom, to motor manufacturer's specification
Cable types	Sine/cosine encoders with zero pulse:	Various manufacturers (3x2x0.14 mm ² + 2x1 mm ²) Heidenhain encoder: Cable festoon- compatible Heidenhain 244 957 01
	Sine/cosine encoder with SSI interface (Heidenhain):	Cable festoon compatible, (4x2x0.14 mm ² + 4x0.5 mm ² + (4x0.14 mm ²)) Heidenhain 266 306 01
	SinCos encoder with HIPERFACE [®] interface (Stegmann):	e.g. Intercond special flex type 3MYI 17Z 10P ((4x2x0.25 mm ² + 2x1 mm ²) (UL approval))

Pin assignment

You can enter your custom assignment in the columns for connector B.

Connec- tor A	Function Sine/cosine	SSI function	HIPERFACE [®] function	Connec- tor B	Wire colour
CDD3000- HF X7				Custom	
1	A-	A-	REFCOS		
2	A+	A+	+COS		
3	+5 V / 150 mA	+5 V / 150 mA			
4		DATA+	Data+ RS485		
5		DATA-	Data- RS485		
6	B-	B-	REFSIN		
7			Us 7-12V / 100mA*		
8	GND	GND	GND		
9	R-				
10	R+				
11	B+	B+	+SIN		
12	+5 V / (sensor)	+5 V / (sensor)			
13	GND (sensor)	GND (sensor)			
14		CLK+			
15		CLK-			

EN

* To 250 mA with external +24 V (-5 %/+20 %) supply via terminal X2 permitted.

Table 3.5 Encoder cable pin assignment

Technical data of LUST encoder cables

These cables are supplied ready made-up in various lengths.

	KRY-KSxxx ¹⁾	KGN-KSxxx ¹⁾	KGS-KSxxx ¹⁾	KGH-KSxxx ¹⁾
drive controller type	CDD3000-HF			
Motors with encoder system	R1, R2, R8, K1, K2, K8	G1	G2, G3, G5	G6, G7
Festoon-compatible	yes			
	Table 3.6 Technical data of LUST encoder cables			

CDD3000-HF Operation Manual

3 Installation

	KRY-KSxxx ¹⁾	KGN-KSxxx ¹⁾	KGS-KSxxx ¹⁾	KGH-KSxxx ¹⁾	
Minimum bending radius: in fixed installation in flexible use	tallation 40 mm		90 mm		
Temperature range: in fixed installation in flexible use	-40 +85 °C		. +80 °C . +80 °C	-40 +85 °C	
Cable diameter approx.	8.8 mm	8.0) mm	8.8 mm	
Material of outer sheath	PUR	F	PUR	PUR	
Resistance	Resistant to oil, hydrolysis and microbic attack (VDE0472), UL 20233 80 °C - 300 V	Resistant to oil, hydrolysis and microbic ditack (VDE0472) (VE		Resistant to oil, hydrolysis and microbic attack (VDE0472), UL 20233 80 °C - 300 V	
1) xxx = Length of cable in metres,	standard lengths: xxx = 05, 10 m; n	naximum 50 m (longer le	engths on request)		
	Table 3.6 Techi	nical data of LUST	encoder cables		
		Hall-IC encoder With the CDD3000-HF motor integrated Hall-IC-switches can also be evaluated. These can be electrically aligned to 90° or 120°.			
Cable type	For the evaluation of	For the evaluation of these Hall-IC's you require a cable with integrated adaptation of the Hall-IC-signals to the high frequency drive CDD3000-			
Connector The two Hall-IC's must be connected via terminal X HF.		d via terminal X7 o	n the CDD3000		
	Figure 3.6 Hall-IC ca	able KHI-xxx	<u></u>		

Wire colour	Function
red	+Ub
yollow	Hall A
green	Hall B
black	ground
Table 3.7	pin assignmen

3.4 Mains connection

Step	Action	Comment	
1	Define the wire cross-section dependent on the maximum current and ambient temperature.	Wire cross-section to VDE0100, part 523	
2	Wire the CDD3000-HF drive controller with the mains filter , max. line length 0.3 m (with unshielded cable)!	Step not applicable for BG1 to BG4; up to 11.8 kVA the mains filter is built-in.	l
3	Wire the line choke ¹⁾ .	Reduces the voltage distortions (THD) in the system and extends the service life.	4
4	Install a circuit-breaker K1 (power switch, contactor, etc.).	Do not connect the power!	
5	Use mains fuses (type gL) or miniature circuit-breakers (trip characteristic C) to cut the mains power to all poles of the CDD3000-HF drive controller.	To protect the cable in accordance with VDE guidelines	Ļ

¹⁾ See appendix A.4.

Connection of the CDD3000-HF drive controller via a line choke with a short circuit voltage of 4 % of the mains voltage ($u_k = 4$ %) is obligatory:				
 Where the CDD3000-HF drive controller is used in applications with interference corresponding to environment class 3, as per EN 61000-2-4 and above (hostile industrial environment). 				
3. Where there is a requirement to comply with the limit values for variable-speed electric drives (see standard EN 61800-3/ IEC 1800-3)				
4. Where there is a dc link between multiple CDD3000-HF drive controller.				

Α

DE EN

3 Installation

Please note that the mains power cable and fuses used must conform to the specified listings (such as cUL, CSA).

Attention: Danger to life! Never wire or disconnect electrical connections while they are live! Before working on the device disconnect the power. Wait until the DC-link voltage at terminals X1/L+ and L- has fallen to ≤ 60 V before working on the device.

Note the following points:

- Only all-current sensitive fault current breakers suitable for CDD3000-HF drive controller operation may be used.
- Switching the mains power: Cyclic power switching is permitted every 120 seconds; jog mode is not permitted.
 - If switching is too frequent, the device protects itself by means of high-resistance isolation from the system.
 - After a rest phase of a few minutes the device is ready to start once again.
- TN network and TT network: Permitted without restriction.
- IT network: Not permitted!
 - In the event of a ground fault the voltage stress is around twice as high, and creepages and clearances to EN50178 are no longer maintained.

Wire cross-section

Mains filters

Size	Power range	Mains filter		
BG1 4	1.0 11.8 kVA	Internal		
1) For supplementary components see CDD3000-HF Order Catalogue				

Note:

Compliance with the limit curves to attenuate the line-	borne
interference voltage and the interference emitted from	the
CDD3000-HF drive controller depends on	

- · use of a line choke (recommended),
- \cdot the length of the motor cable and
- the pre-set clock frequency (4, 8, 12 or 16 kHz) of the CDD3000-HF drive controller power stage. For further information please contact your project engineer.

drive controller for highspeed drives	Connection load [kVA]	Max. possible wire cross-section of terminals [mm²]	Recommended mains fusing (gL) [A]
CDD32.003-HF	1.0	2.5	1 x 10
CDD32.004-HF	1.7	2.0	1 x 10
CDD32.006-HF	2.3		1 x 16
CDD32.008-HF	3.0	2.5	1 x 16
CDD34.003-HF	1.6		3 x 10
CDD34.005-HF	3.0		3 x 10
CDD34.006-HF	4.2	2.5	3 x 10
CDD34.008-HF	5.7	2.5	3 x 10
CDD34.010-HF	7.3	2.0	3 x 16
CDD34.014-HF	10.2	4.0	3 x 20
CDD34.017-HF	12.4	4.0	3 x 25
CDD34.024-HF	17.5	10	3 x 35
CDD34.032-HF	23.3	10	3 x 50

 Table 3.8
 Wire cross-sections and mains fuses (conformance to VDE 0298 is required)¹

¹⁾ The minimum cross-section of the mains power cable is based on the local provisions (VDE 0100 Part 523, VDE 0298 Part 4), the ambient temperature and the specified rated current of the CDD3000-HF drive controller.

1

3.5 Braking resistor (**RB**) During regenerative operation, e.g. when applying the brake to the drive, the motor returns energy to the CDD3000-HF drive controller. This increases the voltage in the DC-link. If the voltage exceeds a threshold value, the internal braking transistor is activated and the regenerated power is converted into heat by way of a braking resistor.

The switching transistor is installed as standard. The design of the external braking resistor depends on a number of drive factors: for example the load to be moved, the required dynamics of the drive or the braking and cycle duration.

Figure 3.8 Braking resistor connection

Note: The design of the braking resistor must be clarified at the project planning stage. Please talk to us!

Attention: In device version

CDD3x.xxx-HF, Wx.x, BR

the braking resistor is built-in. No additional braking resistor may be connected to terminals X1/L+ and RB; this would damage the CDD3000-HF drive controller.

Attention: Braking the drive is important to the safety of the machine or system!

Commissioning should include a test for safe functioning of the braking system! Incorrect dimensioning (overload) could lead to destruction of the braking resistor or the braking electronics, and damage to the machine or system. Overload (failure of the braking device) can also lead to serious or fatal physical injury to human beings, for example in lifting applications!

Attention: At warning message "excessive temperature at unit heat sink" the connected device must be separated from the mains, because an overvoltage of the mains leads to an overload of the braking resistor. Please integrate one of the digital outputs into your control concept, e.g. set OSDxx to ERRW (Warning heat sink temperature of device).

3.6	Control
	connections

Step	Action	Comment
1	Check whether your CDD3000-HF drive controller is fitted with a modified software package (Sxx) and/or a ready-to-run data set (Dxx) . If this is the case, the control terminal assignment is different. Please contact your project engineer with regard to wiring and commissioning!!	CDD32.004,C1.0 V1.4,S XX CF Data Set: UN SN.: CDD32.004,C1.0 V1.4,S XX CDD V1.4,S XX CDD V1.4,S XX OD120442 Position of software name plate see section 3.1 Page 3-2
2	Check whether you already have a SMARTCARD or a DRIVEMANAGER data set with a complete device setup. If this is the case, the control terminal assignment is different. Please contact your project engineer to obtain the terminal assignment!	Bulk customers For details of how to load the data set into the CDD3000-HF drive controller refer to section 4.2.
3	Choose one of the preset solutions.	see section 4
4	Wire the control terminals with shielded wires. Only the ENPO signal is essential.	Ground the shields over a wide area at both ends. Wire cross-section maximum 1.5 mm ² or two cores per terminal each 0.5 mm ²
5	Keep all contacts open (inputs inactive).	
6	Check all connections again!	Continue with commissioning in section 4.

Note the following points:

- Always wire the control terminals with shielded cables.
- Lay the control cables separately from the mains lead and motor cable.

3

3.6.1 Specification of control connections

	No.	Des.	Specification	Isolation
	1	ISA00+	• ISA00: $U_{IN} = \pm 10$ V DC, resolution 12-bit,	
	2	ISA00-	sampling time 1 ms (special function 125 $\mu s)$	
	3	ISA01+	• ISA01: U _{IN} = + 10 V DC, resolution 10-bit,	
Analog	4	ISA01-	sampling time 1 ms	
			• Tolerance: ± 1% of meas.	
Inputs			 24 V digital input, PLC-compatible Switching level Low/High: <4.8 V / > 8 V DC Sampling time 1 ms 	
			• $R_{IN} = 110 \text{ k}\Omega$	
	8	ISD00	• ISD00-ISD02: Frequency range < 500 Hz,	
	9	ISD01	sampling time 1ms	
	10	ISD02		
Digital	11	ISD03	• ISD03-ISD04: Frequency range < 500 kHz,	
	12	ISD04	sampling time 1ms (special functions $< 2 \mu$ s)	1
Inputs			 PLC-compatible Switching level Low/High: <5 V / > 18 V DC 	
			• I_{max} (at 24 V) = 10 mA	
			• $R_{IN} = 3 \text{ k}\Omega$	
	7	ENP0	• Hardware enable of power stage = High level	./
			Specification as ISD00	v
Distin	14	OSD00	Short-circuit-proof	
Digital			PLC-compatible, sampling time 1 ms	1
Outputs			 I_{max} = 50 mA, high-side driver 	v
			Protection against inductive load	

3 Installation

	No.	Des.	Specification	Isolation	
	15	OSD01	 Short-circuit-proof PLC-compatible, sampling time 1 ms I_{max} = 50 mA, high-side driver Protection against inductive load 	~	1
Relay output	16 17	OSD02	 Relay, 1 NO contact 25 V / 0,25 A AC, usage category AC1 30 V / 0,25 A DC, usage category DC1 Sampling time 1 ms Operating delay approx. 10 ms 	1	2
Voltage supply	5 6, 13	+24 V DGND ¹⁾	 Auxiliary voltage U_V = 24 V DC, short-circuit-proof Tolerance: ±20% I_{max} = 100 mA (overall, also includes driver currents for outputs OSD0x) External 24V supply to control electronics in case of power failure possible, current consumption I_{max} = 1 A 	✓	3
Motor holding brake	18 19 20	VCC03 GND03 OSD03	 Digital +24 V output, high-active Short-circuit-proof Suitable for actuation of a motor holding brake (specification, see section 3.3.3) I_{max} = 2.0 A (current overload causes shut-off) to v_{Umax}=45°C; reduction of I_{max} at v_U > 45°C. I_{min} = 150 mA (I < I_{min} wire break causes shut-off) Separate voltage supply required: U_{IN} = + 24 V ± 10% I_{IN} = 2.1 A Also usable as configurable digital output 	•	2

1) Functional isolation between digital (DGND) and analog (AGND) ground. For more information see section 3.6.3 "Isolation".

А

3 Installation

LUST

3.6.2 Standard terminal assignment

| Terminal assignment in factory setting.

Features

 Preset solution, speed control with <u>+</u> 10 V reference input (ISA00)

Figure 3.9 Standard terminal assignment

Note the following points:

• For terminal assignments for further preset solutions refer to CDD3000 Application Manual.

3.6.3 Isolation

The analog and digital inputs are isolated from each other in order to avoid transient currents and interference over the connected lines. The analog inputs are connected to the potential of the servo drive processor. The digital inputs and outputs are isolated, thereby keeping interference away from the processor and the analog signal processing.

Figure 3.10 Voltage supply to I/Os

When selecting the cable, note that the cables for the analog inputs and outputs must always be shielded. The cable or wire core shield on shielded pairs should cover as large an area as possible in respect of EMC considerations, thereby providing safe discharge of high-frequency interference voltages (skin effect).

For special cases refer to the CDD3000 Application Manual.

1

2

3

4

3 Installation

LUST

3.7 EMC compliant installation

Servo controllers are components intended for installation into industrially and commercially used equipment and machines.

Commissioning (i. e. starting inteded operation) is only permitted when strictly complying with EMC-directive (89/336/EEC).

The installer/operator of a machine and/or equipment must provide evidence of the compliance with the protection targets stipulated in the EMC-directive.

Attention: Compliance with the required EMC-protection targets is normally achieved by observing the installation instructions in this manual and using the appropriate radio interference suppression filters.

Assignment of drive controller and mains filter

All drive controllers CDD3000 are fitted with a sheet steel housing with aluminium-zink surface to improve the interference immunity factor as specified in IEC61800-3, environment 1 and 2.

Drive controllers up to 17 A are equipped with integrated mains filters. Compliance with the EMC product standard IEC 69800-3 (limited availability) has been tested and verified.

 Public low voltage network (first environment) living area up to a motor cable length of 10 m.

Attention: This is a restricted availability product in accordance with IEC 61800-3. This product may cause radio interference in domestic environments; in such cases the operator may need to take appropriate countermeasures.

 Industrial low voltage network (second environment) industrial environment up to a motor cable length of 25 m.

For drive controllers without integrated radio interference suppression filters or for appolications with longer motor cables external mains filters must be provided. For this purpose a comprehensive mains filter program EMCxxx is available, see catalog CDD3000.

3.8 Encoder simulation -Master encoder input

The plug connection **X5** of the CDD3000-HF drive controller is designed alternatively to provide the

- incremental encoder simulation or
- incremental master encoder input

function. The signals are isolated from the control electronics.

Step	Action	Comment	
	Define the function of the connection:		
1	• Encoder simulation 3.8.1		2
	Master encoder input 3.8.2		
2	Specify the wire according to the application. A wire cross-section of less than 0.14 mm ² should not be chosen. The differential signals (A, B and R) must be connected to twisted pair wires.	Mount shield at both ends to reduce interference emission	3
3	Wire the circuit according to the application		

3.8.1 Encoder simulation

Encoder simulation forms incremental encoder-compatible pulses from the position of the rotary encoder connected to the motor. Accordingly, pulses are delivered in two 90° offset signals A and B as well as a zero pulse R.

Figure 3.11 Encoder simulation signals looking onto the motor shaft (at left when motor rotating clockwise)

1

4

The resolution of the encoder simulation is adjustable when a resolver is used; when incremental encoders are used it corresponds to the resolution of the connected encoder. Rotary encoders of type G2-G6 emit no zero pulse.

* CDD3000-HF does not include wave terminating resistor. It must be wired externally.

Figure 3.12 Encoder simulation connection and signal description

Electrical specification

Interface: RS422 Recommended wire cross-section >0.14 mm² (e.g. 3x2x0.14 mm²) Max. cable length 10 m Connector: 9-pin D-SUB, socket

	min.	max.	Comments
Output frequency	0 Hz	500 kHz	
Output voltage High level Low level Differential 	2.5 V - 2.0 V	- 0.5 V -	(I _{OH} = -20 mA) (I _{OL} = 48 mA)

 Table 3.9
 Encoder simulation electrical specification

The controller connected to the encoder simulation must be able to process its output frequencies.

Example:

ble:

$$f = \frac{3000 \text{min}^{-1} \cdot 2048 \text{Impulse}}{60 \text{min}^{-1} \text{s}} = 102.4 \text{kHz}$$

3.8.2 Master encoder

The master encoder input **X5** permits incremental reference input for loop control. The reference generator is either the encoder simulation of another CDD3000-HF drive controller, a standard commercially available incremental encoder or a stepper motor controller. The signal shape corresponds either to

• A/B incremental encoder signals or

• **pulse direction signals** when a stepper motor controller is connected.

2

1

A

Parameters to evaluate the signals can be set for signal type, lines per revolution and transmission ratio.

Electrical specification

Interface: RS422 Recommended wire cross-section >0.14 mm² (e.g. 3x2x0.14 mm²) Max. cable length 10 m Connector: 9-pin D-SUB, socket

	min.	max.	Туре
Input frequency	0 Hz	500 kHz	
Input voltage High level Low level Differential 	0.2 V -	- 0.2 V ± 6 V	
Wave terminating resistance			120 Ω
Voltage supply to external encoder	4.5 V	5.5 V	5 V / 100 mA

A master encoder with HTL level (24V) can alternatively be connected via control terminal X2. Digital inputs ISD03 and ISD04 are used for this.

You will find the specification of the digital inputs of control terminal X2 in section 3.6 "Control connections".

TTL encoder

Note:

A rotary encoder with TTL level can also be connected to master encoder

input X5. For the terminal assignment refer to Figure 3.13.

When a HTL master encoder is in use, both the encoder

simulation and the master encoder input at X5 are inactive.

2

3

4

5

HTL master encoder

Attention: Operation of a synchronous high frequency motor with a TTL encoder additionally requires setting of the commutation detection parameters. (For more information on this refer to the CDD3000 Application Manual). This setting is not required for asynchronous motors.

4 Commissioning

4.1	Choice of commissioning	4-2
4.2	Serial commissioning	4-2
4.2.1	Serial commissioning with DRIVEMANAGER	4-2
4.2.2	Serial commissioning with KEYPAD	4-4
4.3	Initial commissioning	4-6
4.3.1	Selecting the unit for speed values	4-8
4.3.2	Selecting preset solution	
4.3.3	Setting the motor and encoder	
4.3.4	Making basic settings	
4.3.5	Setting function parameters	4-14
4.3.6	Safety functions	4-15
4.3.7	Motor filter	4-16
4.3.8	Switching frequency	4-16
4.3.9	Saving settings	
4.4	Test run	4-18
4.5	Operation with DRIVEMANAGER	4-22
4.6	Operation with KeyPad KP200	4-24

Attention: Commissioning must only be carried out by qualified

accident prevention measures.

electricians who have undergone instruction in the necessary

A

4

DE EN

4.1	Choice of			
	commissioning	Mode of commissioning	Commissioning steps	Continued on
		 Project planning and commissioning are already complete. Loading of an existing data set. 	Serial commissioning	Page 4-2
		 Initial project planning and commissioning of the drive system 	Initial commissioning	Page 4-6
		 Project planning and basic setting of the drive system have been carried out. 	Test run	Page 4-18
4.2	en you want to commis ing). The same HF dri sed for each drive in	ve controller		
		If you already have a complete data "Saving a data set from the device to 1-4) and "Saving a data set to a SMAR"	a file" (with DRIVEMAN	IAGER, steps
		A test run is essential, see section 4.4.		
4.2.1	Serial commissioning with DRIVEMANAGER	 Precondition: All CDD3000-HFs are fully connect The first drive is already fully com A PC with installed DRIVEMANAGED connected. 	missioned.	or higher) is

	Step	Action	Comments	
Saving a data set from the device to a file	1	Connect your PC to the CDD3000-HF of the first drive and switch on the power to the CDD3000-HF.	Use a standard serial cable (9-pin D-SUB, pin-and-socket) e.g. LUST accessory CCD-SUB90x .	
		START DriveManager.	Automatically connects to the linked CDD3000-HF.	ĩ
	2	If the connection fails, check the bus	settings in the Communication > Bus	l
		Configuration menu and try again by	r clicking on the icon.	
		Save the current settings by clicking	Clicking on the icon always saves the current settings of the connected	
	3	on the icon 💵 ,	device. Assign the file a name of your choice.	I
	0	either in the parameter database (directory: c://userdata) of the	If you are using the "Positioning, fully programming" preset, also save the	l
		DRIVEMANAGER or to a floppy disk (a:/).	positioning programs and data. ¹⁾	
	4	Disconnect with		
	5	Connect your PC to the CDD3000-HF power to the CDD3000-HF.	of the next drive and switch on the	
	6	Click on the icon to make a connectio and the newly connected device.	n between the DriveManager	
Load data set from file into	_	Choose the icon	The data set is stored in the device.	l
device	7	the data set saved in step 3 into the device (select all files).	The selection box shows all the stored files in the data set.	l
	8	Save the setting by clicking on the "S	ave setting in device" button.	Ì
		Repeat steps 5 8 on each additiona	al CDD3000-HF.	
		1) For details of save operation see Section 4	.3.9.	
Remember to save	Note:	For more information refer to	o the DRIVEMANAGER Manual.	
, T				
				l

4.2.2 Serial commissioning with KeyPaD

Note:

Serial commissioning with KEYPAD is **not** possible with a position controlled preset solution.

Precondition:

- All CDD3000-HF drive controller are fully connected.
- The first drive is already fully commissioned.

Attention: The CARD menu can only be selected when the drive is not active!

Step	Action	Comment	Display
1	Connect the KeyPad to the CDI drive, insert a SMARTCARD and		
2	Press stop/return twice to call up the CARD menu.	= Load/save with the SmartCard	CARD MENU MENU
3	Choose WRITE.	= Save data set	
4	Choose ALL and start the save operation with the <i>start/enter key.</i>	= Complete data set is saved	
5	READY appears.	= Save operation completed without error	REAJY

By this action you have written your data set to a SMARTCARD.

Saving a data set to a SMARTCARD

Load data set from SMARTCARD into next CDD3000-HF

Step	Action	Comment	Display	
1	Connect the KeyPad to the CDI drive, insert the SMARTCARD w set and switch on the power.		1	
2	Choose the CARD menu.	= Load/save with the SMARTCARD		ī
3	Choose READ.	= Load data set	READ D	2
4	Choose ALL and start the load operation with the <i>start/enter key</i> .	= Complete data set is loaded		3
5	READY appears.	= Load operation completed without error	REAJA	Ī
	Repeat the load operation on	each additional drive.		4

Note:

The data set is automatically saved in the CDD3000-HF.

4 Commissioning

4.3 Initial commissioning

Preconditions:

- The CDD3000-HF is fully connected; see Section 3
- Installed DRIVEMANAGER version V3.4 or higher
- Motor database for LUST servomotors is installed on the PC
- Device is connected to PC via RS232 interface (X4)

Attention: Never wire or disconnect electrical connections while they are live! Before working on the device disconnect the power. Wait for the DC-link capacitors to discharge. Work may only be carried out on the device when the residual voltage (between terminals L+ and L-) is below 60 V!

Connect input ENPO = Low level at terminal 7 (X2) to prevent unintentional startup of the motor (power stage disabled, CDD3000-HF power on).

Preparations:

- Switch on the CDD3000-HF. A self-test is carried out.
- Start the DRIVEMANAGER.
- Connect to the device.

DRIVEMANAGER Connect or:

Communication > Connect...

4 Commissioning

DriveManager CDD3000-HF setup

or: Active device > Change settings

Open the main window "Adjust CDD3000":

Continue with:

Adjust CDD 3000	×	
Initial commissioning	Preset solution: Speed control, +/-10V reference, controlled via terminal Basic settings	А
		DE

4 Commissioning

4.3.1 Selecting the unit for speed values

The CDD3000-HF provides the possibility to evaluate all nominal and actual speed values in the units [Hz] or [rpm].

Choice of displayed uni	ts			×
Actual active unit		1/min		
Active unit after next power of	n	1/min (1)	•	
Affected parameter values w accordance to chosen unit	ill be converted in			
Save setting in devic	e		<u>C</u> ancel	

Bild 4.2

The desired unit can be set under the option "Selection of display unit". All parameters concerned will be converted to the newly selected unit.

4.3.2 Selecting preset solution

Preset solutions

The preset solution is selected according to the type of drive task. A preset solution is a presetting of the CDD3000-HF which can subsequently be adapted to the application.

The CDD3000-HF provides a wide range of preset solutions, each described briefly in the DRIVEMANAGER. The application preset by a preset solution can optionally be controlled via the control terminals or over a field bus.

The preset solutions are:

- Torque control, ±10V reference (TCT_1)
- Speed control with external position control (SCT 1)
- Speed control, ±10V reference (SCT_2, SCB_2) •
- Speed control, fixed speeds (SCT_3, SCB_3) •
- Speed control, pulse input (SCT_4, SCB_4) •
- Speed control, reference and control over fieldbus (SCB_5)
- Electronic gearing (PCT_1, PCB_1) .
- Positioning over fieldbus (PCB_2) •
- Positioning, fixed positions (PCT_3, PCB_3) •
- Positioning, fully programmable (PCT_4, PCB_4) ٠

With the DRIVEMANAGER the desired preset solution can be selected and modified.

Figure 4.3 Initial commissioning

EN

1

2

3

4

Select the preset solution matching your application. The various screens list the application and functional features offered by the individual solutions.

Figure 4.4 Selection of preset solution

Note: For detailed information on preset solutions and on terminal assignment refer to the CDD3000 Application Manual.

4 Commissioning

4.3.3 Setting the motor and	🚰 Load motor data 🛛 🔯	
encoder	Motor Encoder Motor protection Commutation detection	1
2		
Motor and encoder	Description of type	2
	Type Synchronuous-servomotor	
	MdN 4.1 Nm IdN 3.2 A nN 3000 rpm	
	fn 150 Hz	3
	QK Cancel Acci	
	Figure 4.5 Motor and encoder setup	4
Setting the motor data	A database is available containing the settings for all Lust servomotor. Using the correct motor data set ensures	
	 that the electrical parameters of the motor are correctly set, 	
	 that the motor protection ("Motorprotection" tab) is correctly set and that the control circuits of the drive are preset. 	5
1	Note:The torque controller is set up optimally, so no further adjustments are necessary. The setting of the speed controller is based on the assumption that the machine moment of inertia reduced onto 	A
	For special settings to optimize the speed and position control loops, please use the CDD3000 Application Manual.	DE EN

Click on the "Other Motor" button on the "Motor" tab to select the right motor from your installed database. The motor type is indicated on its name plate. If the motor data set is supplied on a data carrier (floppy disk, CD-ROM), it can be loaded directly by clicking on the "Change directory" button.

If you are using a motor which is not in the database, Lust Antriebstechnik GmbH offers custom data sets as a special service. Please consult your project engineer on this.

Setting of the rotary encoder

The rotary encoder connected to the motor is set up on the Encoder tab. Resolvers are assigned the abbreviation Rx, encoders Gx. The encoder used is entered on the motor name plate.

Encoder:		Uptorn
USER (0) = User del R1 (1) = Resolver, 1	pair of poles	
R2 [2] = Recolver, 2 R8 [3] = Recolver, 3	paris of poles	
G1 (4) = Sine/Cooine G2 (5) = Singletum-a	encoder bsolut encoder, 25 bit	SSI-interface
	solut encoder, 25 bit 5 bsolute encoder, 11 b	
G5 (8) = Singletum-a	bsolute encoder, 13 b	
G7 (10) = Single-, Mr		der, Hiperface, 512 Str.
Automatic correction		
Automatic contection	on activated (online)	

Example:

Type ASM-11-20**R2**3 specifies the setting by the designation **R2** (resolver, 2 pole pairs), here shown in bold as an example.

When selecting a user-defined encoder type, the settings are entered under "Optionen...". For notes on the specification of rotary encoders refer to Appendix A.5.

The automatic track signal correction enhances the smooth running of the drive. It can be applied with values stored once on the basis of a teach-in process, or in online adaptive mode.

LUST	4 Commissioning
	For more information on setting up user-defined encoders and on automatic track signal correction refer to the CDD3000 Application Manual.
Checking the encoder	To check the encoder the motor shaft is rotated by hand. The viewing angle when checking is from the front onto the shaft end (flange). The "CDD3000-HF reference and actual values" status display, under "nist, Actual speed", must indicate a positive speed in clockwise rotation and a negative speed in counter-clockwise rotation. If the speed is incorrect, the following points must be checked (see also section 3.3.4):
	 Is the encoder cable correctly connected to the motor and the CDD3000-HF ?
	• Is the encoder cable in use the correct one for the type of encoder ?
4.3.4 Making basic settings	Custom setup screens are provided for fine adjustment of each preset solution. You can use them to adapt the drive to your application. For a detailed description of the individual functions refer to the CDD2000

3. Basic settings..

ent of each preset application. For a detailed description of the individual functions refer to the CDD3000 Application Manual.

1

2

3

EN

🝼 Speed contra	l, +/-10V reference, controlled via terminal	
Reference	Speed profile	
		4
10V corresp	bonds to 1/min	4
Backlash	Speed control, +/-10V reference, controlled via terminal	_
F *	Reference Speed profile	
Filter	Acceleration ramp (ACCR) 0 rpm/s	
	Deceleration ramp (DECR) 0 rpm/s	5
	Smoothing time (JTIME)0 ms	
	<u> </u>	
		DE

4 Commissioning

4.3.5 Setting function parameters

Example: Setting "max. torque" Once the preset solution, its basic settings and the motor data have been set, general function settings can also be made.

In contrast to the basic settings, the functions are independent of the preset solution.

The required functions, such as the maximum torque, can be programmed using the DRIVEMANAGER. When you select "Limit values":

1 1 1+++ Inputs		Biesolver, 1 pair of poles
Outputs	op control Limit values	Motor and encode
		-
Bus systems	Encoder / encoder simulation	cam-contactor group
-	A	

Figure 4.6 Parameter setting in the DRIVEMANAGER:

this window opens up:

Limit values	Toleranc	es Track	ing error	
Maximum	torque			
Mmax =	100	_* × □	_8.2	Nm
Maximum sp	eed	_3000		rpm
Stop ramp		0		rpm/s

The maximum torque can be set on the "Limit values" tab.

4.3.6 Safety functions | Check the safety relevant parameters.

The "Limit value" function can be used to enter further limit values for the max. speed or the overspeed threshold besides the maximum torque.

Please check also the data for motor protection in the motor and transducer function. In the window "Motor protection" you can set the warning and maximum temperatures for the motor sensor (KTY).

Bild 4.7 DRIVEMANAGER mask "Motor protection"

5

1

2

3

4.3.7 Motor filter

Sinusoidal filter

For the reduction of harmonic waves motor filters in the form of motor choke or LC-sinusiodal filters are used in certain applications.

In the regulation of synchronous machines the use of sinusoidal filters for the reduction of harmonic waves is supported. The capacitance value is entered under "Sine filter". If only a motor choke is used, this must be entered in the field "Motor choke", irrespective of the motor type.

Control Sine litter Power talkare		
C Activate compensation sine Rev		
Capacitance of capacitor (Specification in star connection)		ď
Motor choke		μН
0	K Cance	N Aco

Bild 4.8 DRIVEMANAGER mask "Motor filter"

4.3.8 Switching frequency

For high frequency applications the switching frequency of the output stage should be at least 10 times the value of the output frequency.

The switching frequency can be selected under "Control - output stage". Please observe the permissible current load of the output stage for the different switching frequencies (see appendix A1).

4.3.9 Saving settings

DriveManager CDD3000-HF setup

or: Active device > Change settings

DriveManager CDD3000-HF setup

or: Active device> Save device settings to>file

Saving the settings in the device

Any changes which are to be stored permanently in the device must be saved by way of the *CDD3000-HF setup* screen.

The changes made can also be saved to a file.

Saving the settings to a file

Depending on the preset solution, the CDD3000-HF has a range of data sets which together form the device configuration.

Save	Necessary with preset solution	With KeyPad to SmartCard	With DriveManager to file
Device data (="Settings") (device settings and motor data)	All	yes	yes (*.00D), (*.00T), (*.00X)
Positioning data (variables, flags and table position of sequence control)	Positioning, fully programmable (PCT_4 PCB_4)	no	yes (*.01D), (*.01T), (*.01X)
Sequence programs	Positioning, fully programmable (PCT_4 PCB_4)	no	yes (*.prg)

Choose the file name (e.g. mydata). Then the data sets are selected depending on the preset solution. All files are saved under the chosen file names (e.g. mydata) with the appropriate extension (*.00D). The device data can be assigned a description prior to saving.

DE EN

1

2

3

4

5

Continue with:"Test run", see section 4.4.

4.4 Test run

The drive is tested without the coupled mechanism. The test run is carried out in speed controlled mode, independently of the chosen preset solution.

A test run is still possible even if the motor is already coupled to the system:

Attention: Test run with installed servomotor:

In this case it must be ensured that the test does not damage the system! In particular, pay attention to positioning range limits.

Please note that you yourself are responsible for safe operation. Lust Antriebstechnik GmbH cannot be held responsible for any damage incurred.

Danger to life from uncontrolled rotation!

Before motors with a feather key at the shaft end are commissioned, the feather key should be secured against being ejected, if this cannot be prevented by drive elements such as pulleys, couplings, or the like.

Preset solution, torque control:

In this preset solution the drive must not be run without load torque, otherwise the motor shaft would accelerate uncontrolled up to the preset speed limit.

Attention: Destruction of the motor:

The motors are intended for service on the CDD3000-HF highspeed drives. Direct connection to the mains may lead to destruction of the motor.

The motors may be subject to surface temperatures of over 100 °C. Temperature-sensitive items should therefore not be placed on top of or attached to the motors. Protective measures may be needed to prevent touching.

The temperature sensor installed in the winding is to be connected to the CDD3000-HF in order to prevent overheating of the motor by the temperature monitor.

The brake (if installed) should be checked for fault-free functioning before installation of the motor.

The standstill holding brake (installation optional) is only designed for a limited number of emergency brakings. Use as a working brake is prohibited.

Pay attention to the time response of the inputs.

2. Control with DRIVEMANAGER:

Set the ENPO input, select "Speed control" and start the drive, e.g. at reference speed 100 rpm.

rive	Control mode	
Start (enable power stage)	Speed control	
Stop (disable power stage)	Reference	
<u>R</u> everse direction	0	1/min
Stop (with speed 0)		
Reset error	-3000	0 3
ctual value amount		Exit
0.413	1/min	Help

modes

DRIVEMANAGER Open-loop control

or: Active device > Open-loop control> Basic operation

 \mathbf{N}

DriveManager Digital scope or:

Active device > Monitoring > Quickly changing digital scope values

Check the drive response

Now you can assess the drive response with the aid of step responses, which can be recorded using the DRIVEMANAGER's digital scope function. Select the following four recording variables: - 0: Speed: Reference

- 0: Speed: - 1: Speed:
 - d: Actual
- 2: Torque: Reference
- 3: Torque: Actual

1

2

3

4

Trigger condition: Channel 0; rising edge, pretrigger 10%; level: 30 rpm

Start the drive with a reference value of 100 rpm for example.

Compare the step response of your drive with the diagram. With resolvers the overshoot of the actual speed should be around 20 %; with sin/cos incremental encoders around 30 % (referred to the reference value). Make sure the drive system exhibits small signal response (the torque reference value must be less than the maximum).

If the torque reference reaches its maximum, reduce the speed step.

The time response (rise time, correction time) of the speed control loop is independent of the speed step.

Result:

If the step response of your drive more or less matches the diagram, you can be sure that the motor phases are correctly wired, the encoder is correctly connected, and the CDD3000-HF parameters are set to the correct motor.

If the step response deviates severely from the diagram, it is to be assumed that

- · the motor data set was selected incorrectly, or
- the cabling is faulty

Check the individual steps from Section 3 "Installation" and Section 4.3 "Initial commissioning" and repeat the test run.

The step response may also deviate if the ratio of the machine moment of inertia reduced onto the motor shaft relative to the motor moment of inertia is very high. Here the loop control settings must be optimized. For special settings to optimize the speed and position control loops, please use the CDD3000 Application Manual.

3

2

A

DE EN

4.5 Operation with DRIVEMANAGER

Precondition:

 $\mathsf{DRIVEMANAGER}$ user software (version V3.4 or higher) installed on the PC.

CDD3000-HF connection to PC/DRIVEMANAGER

lcon	Function	Menu
∱	Connect to device	Communication > Connect > Single device
	Change device settings	Active device > Change settings
9	Print parameter data set	Active device > Print settings
$\overline{\mathbf{O}}$	Control drive	Active device > Open-loop control > Basic operation modes, no position references
\sim	Digital scope	Active device > Monitoring > Quickly changing digital scope values

The key functions

For more information refer to the DRIVEMANAGER Manual.

lcon	Function	Menu
1	Save settings from device to file	Active device > Save device settings to
	Load settings from file into device	Active device > Load device settings from
T _t	Bus initialization (change settings)	
₩.	Disconnect from device	Cut all device connections
跑	Compare device settings	Active device> Compare settings

4

5

A

DE EN

Menu structure

4 Commissioning

4.6 Operation with KeyPad KP200

KeyPad KP200 overview

The KEYPAD can be plugged directly into slot X4 of the CDD3000-HF.

Figure 4.2 Functions of the menus

Example parameter setting (PARA menu)

- The parameters in the PARA menu are grouped into subject areas according to their functions, in order to provide a clearer overview.
- Only the parameters to which the current user level permits access can be changed.
- 1. Select PARA menu.

- 2. Select desired subject area with cursor keys and confirm with start/enter.
- 3. Select desired parameter with cursor keys (pay attention to user level).
- The current value is displayed, with the last character flashing. Switch to the next character using the down key. Use the up key to change the flashing character. The fifth character at the extreme left indicates the preceding sign: (–) = minus.

The last character can be entered as an exponent.

Save new value with **start/enter** or cancel (without saving) with **stop/return.**

It is not possible to use the Card menu or save data on the SMARTCARD for position controlled preset solutions!

1

4

Read from/write to SMARTCARD:

- In this menu CDD3000-HF settings can be saved to the SMARTCARD and transferred to other CDD3000-HF.
- In every storage operation all parameters are always saved to the SMARTCARD. For read operations, either all parameters or only parameters for motor setup (per read operation) can be read-in.

Function	Meaning
READ > ALL	Read all parameters from SMARTCARD
READ > DRIVE	Parameters from subject area, e.g. read-in motor settings
WRITE	Store all parameters on the SMARTCARD
LOCK	Write-protect the SmartCard
UNLOCK	Cancel the write protection

5 Diagnosis/Fault rectification

5.1	LEDs5-1
5.2	Fault response5-2
5.3	Error messages5-3
5.4	Resetting errors5-4
5.5	User errors in KeyPad operation5-5
5.6	User errors in SMARTCARD operation5-5
5.7	Errors in power switching5-5
5.8	Reset5-6

5.1 LEDs

At the top right of the CDD3000-HF there are three status LEDs coloured red (H1), yellow (H2) and green (H3).

Device status	Red LED (H1)	Yellow LED (H2)	Green LED (H3)
Power on	О	О	•
CDD3000-HF ready (ENPO set)	О	•	•
Control enabled	О	*	•
Error	¥ F(flash code)	О	•
Warning (in "ready" condition)	•	•	•
Warning (in "control enabled" condition)	•	*	•
OLED off, $ullet$ LED on, st LED flashing			

2

3

5

5.2 Fault response

When a fault occurs the CDD3000-HF responds with a specific function sequence. This is allocated to a corresponding **response number**.

Display KeyPad	Response no.	Function
WARN	0	Signal error only, no further response (warning)
HALT	1	Signal error and disable power stage
STOP	2	Signal error, quick-stop and wait for cancellation of start signal
LOCKH	3	Signal error, disable power stage and secure against restarting $^{1)} \label{eq:signal}$
LOCKS	4	Signal error, quick-stop, wait for cancellation of start signal and secure against restarting ¹⁾
RESET	5	Signal error, disable power stage and wait for error reset; error reset only possible by complete cutting of power.

1) Only relevant with programmed autostart function.

1

2

3

4

5

EN

5.3 Error messages If a fault occurs in operation it is indicated by a flash code from LED H1 (red) on the CDD3000-HF. If a KP200 is connected the KP200 indicates the error type as an abbreviation. When the DRIVEMANAGER is active the error is additionally reported in plain text.

Flash code of red LED H1	Display KeyPad	Response No.	Explanation	Cause/Remedy
1x	Various messages	0-5	Various errors	See Application Manual, Appendix B, Fault rectification
2x	E-0FF	1	Undervoltage shut-off	Check power supply. Also occurs briefly in response to normal power-off.
3x	E-0C	3	Current overload shut-off	Short-circuit, ground fault: Check cabling of connections, check motor coil, check neutral conductor and grounding (see also section 3, Installation). Device setup not correct: Check parameters of control loops. Check ramp setting.
4x	E-0V	3	Voltage overload shut-off	Voltage overload from mains: Check mains voltage. Restart device. Voltage overload resulting from feedback from motor (regenerative operation): Slow down braking ramps. If not possible, use a braking resistor.
5x	E-OLM	3	Motor protection shut-off	Motor overloaded (after I x t monitoring): Slow down process cycle rate if possible. Check motor dimensioning.
6x	E-0LI	3	Device protection shut-off	Device overloaded: Check dimensioning. Possibly use a larger device.
7x	E-OTM	3	Motor temperature too high	Motor PTC correctly connected?: Motor PTC evaluation correctly set? Motor overloaded? Allow motor to cool down. Check dimensioning.
8x	E-OTI	3	Overheating in CDD3000- HF	Ambient temperature too high: Improve ventilation in switch cabinet. Load too high during driving/braking: Check dimensioning. Possibly use a braking resistor.

Table 5.1Error messages

Helpline

If you need further assistance, our specialists at the Lust Helpline will be glad to help.

You can reach us:

 Mon.-Thur.: 8 a.m. - 4.30 p.m.
 Tel. +49-6441/966-180, Fax -177

 Fri.:
 8 a.m. - 4 p.m.
 Tel. +49-6441/966-180, Fax -177

 E-mail:
 helpline@lust-tec.de

CDD3000-HF Operation Manual

5.4	Resetting errors	Resett	ing errors with	response r	number 1 to 4 (WRN-LOCKS):
Res	etting errors (after	• In	control via termin	als:	rising edge at input ENPO (attention: control is shut off!) or: with input Ixxx, to which the function FIxxx = RSERR (Reset
elim	inating the cause)			1	Error) is assigned
		• In	control via KeyPa	ad: press	stop/return key on KeyPad for approx. 3 seconds
		• In	control via DRIVE	MANAGER:	click on "Reset error" button
		• In	control via fieldbu	IS:	set "Reset error" bit in bus control word
Startii	ng the drive after an error	• Ca	incel start signal a	and reapply i	t.
		• Wi	th programmed a	uto-start fun	ction:
		-	the error is rese	et.	he drive automatically restarts when
		-			he drive does not restart until the awn and re-sent.
		Resett	ing errors with	response r	number 5 (RESET):
		can on			SET) are serious device errors. They pply voltages (mains, possibly 24V)

5.5 User errors in KEYPAD operation

Error	Cause	Remedy				
ATT1	Parameter cannot be changed at current user level or is not editable.	Select user level 1-MODE higher.				
ATT2	Motor must not be controlled via the CTRL menu.	Cancel start signal from a different control location.				
ATT3	Motor must not be controlled via the CTRL menu because of error state.	Reset error.				
ATT4	New parameter value impermissible	Change value.				
ATT5	New parameter value too high	Reduce value.				
ATT6	New parameter value too low	Increase value.				
ATT7	Card must not be read in current state.	Reset start signal.				
ERROR	Invalid password	Enter correct password.				
Table 5.2	Table 5.2 KeyPad USER ERROR: Reset with start/enter					

5.6 User errors in **SMARTCARD** operation

5.7 Errors in power switching

Error	Meaning	Remedy	
ERR91	SMARTCARD write-protected		4
ERR92	Error in plausibility check		
ERR93	SMARTCARD not readable, wrong CDD3000-HF type		
ERR94	SMARTCARD not readable, parameter not compatible	lles different	
ERR96	Connection to SMARTCARD broken	Use different SmartCard	5
ERR97	SMARTCARD DATA invalid (checksum)		
ERR98	Insufficient memory on SMARTCARD		
ERR99	Selected area not present on SMARTCARD, no parameters transferred to SMARTCARD		
Table 5.3	SMARTCARDerror: Reset with stop/return		Α

DE EN

Error	Cause	Remedy
Power on. CDD3000-HF shows no response (LEDs off).	If switching is too frequent, the device protects itself by means of high-resistance isolation from the system.	After a rest phase of a few minutes the device is ready to start once again.

5.8 Reset					
Parameter reset	In PARA menu of KEYPAD: Press the two cursor keys to reset the parameter currently being edited to the factory defaults.				
	In the DRIVEMANAGER: In the focused setup window by pressing the F1 key. The factory setting of the parameter is indicated on the "Value range" tab and is to be entered there.				
Factory setting	KEYPAD: Press both KEYPAD cursor keys simultaneously during CDD3000-HF power-up to reset all parameters to their factory defaults and the system is reinitialized.				
	DRIVEMANAGER: Select the "Reset to factory setting" function from the "Active Device" menu.				
	Note:Attention! Resetting the factory defaults will delete the motor data settings and the preset solution "SCT_2-Speed control, ±10 V reference, controlled via terminal" will be loaded. Pay attention to the terminal assignment and the functionality of the CDD3000-HF in this preset solution.				

1

2

A Appendix

Technical data	A-2
Ambient conditions	A-8
Project planning notes, "Cold plate"	A-9
Change in system load through use of a line choke	A-10
UL approbation	A-12
Layout	A-14
	Ambient conditions Project planning notes, "Cold plate" Change in system load through use of a line choke UL approbation

A.1 Technical data

| CDD32.003-HF to CDD34.006-HF

Designation	CDD32.003-HF	CDD32.004-HF	CDD32.006-HF	CDD32.008-HF	CDD34.003-HF	CDD34.005-HF	CDD34.006-HF	
Technical data	CDI	CDI	CDI	CDI	CDI	CDI	CDI	
Output, motor end ¹⁾								
Device rated power	1.0 kVA	1.6 kVA	2.2 kVA	2.8 kVA	1.5 kVA	2.8 kVA	3.9 kVA	
voltage		3 x 0	. 230 V		3 x	0 400/46	60 V	
Continuous current (RMS) (I_N)	2.4 A	4.0 A	5.5 A	7.1 A	2.2 A	4.1 A	5.7 A	
Peak current 1.8 x I _N for 30 s	4.3 A	7.2 A	9.9 A	12.8 A	4.0 A	7.4 A	10.3 A	
Rotating field frequency				0 1600 Hz	Hz I			
Switching frequency of power stage	e 4, 8 , 12, 16 kHz							
Input, mains side								
Mains voltage	1 x 230 V -20 % +15 %			3 x 400 V / 3 x 460 V -25 % +10 %				
Current (with line choke)	4.4 A	7.3 A	10.0 A	12.9 A	2.3 A	4.3 A	6.0 A	
Asymmetry of mains voltage	_				±3 % max.	•		
Frequency		50/60 H	z ±10 %		50)/60 Hz ±10	%	
Power loss at 4 / 8.16 kHz [W]	49 / 52	63 / 70	90 / 97	110 / 120	70 / 85	95 / 127	121 / 163	
Braking chopper power electronics								
Peak braking power with int. braking resistor (only with version CDD34, Wx.x, BR)		-		-	-	-	1.6 kW at 360 Ω	
Minimum ohmic resistance of an externally installed braking resistor	100	Ω	56	Ω	180 Ω			

 Data referred to output voltage 230 V/400 V and switching frequency 8 kHz

CDD34.008-HF to CDD34.032-HF

Designation	CD D34.008-HF	CDD34.010-HF	CDD34.014-HF	CDD34.017-HF	CDD34.024-HF	CDD34.032-HF
Technical data	CDD3	CDD3	CDD3	CDD3	CDD3	CDD3
Output, motor end ¹⁾						
Device rated power	5.4 kVA	6.9 kVA	9.7 kVA	11.8 kVA	16.6 kVA	22.2 kVA
Voltage		3 x 0 400/460 V				
Continuous current (RMS) (I_N)	7.8 A	10 A	14 A	17 A	24 A	32 A
Peak current 1.8 x I_N for 30 s	14 A	18 A	25 A	31 A	43 A	58 A
Rotating field frequency		0 1600 Hz				
Switching frequency of power stage			4, 8 , 12	2, 16 kHz		
Input, mains side						
Mains voltage		3 x	400 V / 3 x 46	0 V -25 % +1	0 %	
Current (with line choke)	8.2 A	10.5 A	14.7 A	17.9 A	25.3 A	33.7 A
Frequency			50/60 H	lz ±10 %		L
Power loss at 4 / 8.16 kHz [W]	150 / 177	187 / 222	225 / 283	270 / 340	330 / 415	415 / 525
Braking chopper power electronic	s					
Peak braking power with int. braking resistor (only with version CDD34, Wx.x, BR)) kW 90 Ω) kW 90 Ω) kW 90 Ω
Minimum ohmic resistance of an externally installed braking resistor	81	Ω	47	7 Ω	22	Ω

¹⁾ Data referred to output voltage 400 V and switching frequency 8 kHz

The maximum permissible controller output current and the peak current of the CDD3000-HF are dependent on the mains voltage, the motor cable length, the power stage switching frequency and the ambient temperature. If the conditions change, the maximum permissible current capacity of the CDD3000-HF also changes. For details of which current load on the power stage modules is permissible under which changed background conditions, refer to the following characteristic diagrams and tables.

Current capacity of drive controllers

*Intermittent $I_N > I_{eff}$

$$I_{eff} = \sqrt{\frac{1}{T} \cdot \sum_{i=1}^{n} I_{i}^{2} \cdot t_{i}}$$

(1)Continuous

(2)Intermittent* > 5 Hz rotating field frequency

drive controllers 2.4 A to 32 A: $I/I_N = 1.8$ (for 30 s at 4 kHz) $I/I_N = 1.8$ (for 30 s at 8 kHz) $I/I_N = 1.8$ (for 30 s at 16 kHz)

(3)Intermittent* 0 to 5 Hz rotating field frequency

drive controllers 2.4 A to 32 A: $I/I_N = 1.8$ (for 30 s at 4 kHz) $I/I_N = 1.25-1.8$ (for 30 s at 8 kHz)

(4)Pulse mode

drive controllers 2.4 A to 32 A: $I/I_N = approx. 2.2$ (at 4, 8, 16 kHz)

drive controller for highspeed drives	Device rated power output [kVA]	Switching frequency of power stage [kHz]	Rated current [A]	Peak current for intermittent mode 0 to 5 Hz [A]	Peak current for intermittent mode > 5 Hz [A]
		4	2.4	4.3	4.3
CDD32.003-HF.Cx.x	1.0	8	2.4	4.3	4.3
GDD32.003-HF,GX.X	1.0	12	2.1	3.8	3.8
		16	1.8	3.2	3.2
		4	4	7.2	7.2
CDD32.004-	1.6	8	4	7.2	7.2
HF,Cx.x ¹⁾	1.0	12	3.5	6.3	6.3
, -		16	3	5.4	5.4
		4	5.5	9.9	9.9
CDD32.006-	2.2	8	5.5	9.9	9.9
HF,Cx.x ¹⁾	2.2	12	4.9	7.1	8.8
		16	4.3	7.7	7.7
		4	7.1	12.8	12.8
CDD32.008-	2.8	8	7.1	12.8	12.8
HF,Cx.x ¹⁾	2.8	12	6.3	9.1	11.3
		16	5.5	8	9.9
Peak current for 30 s wit Cooling air temperature: 1) With heat sink HS3 (45 °C at power s 40 °C at power s	Mains voltage 1 x 230 Motor cable length 10 Mounting height 1000 End-to-end mounting	m		

Drive controller for highspeed drives for 230 V systems

A

DE EN

| Drive controller for highspeed drives for 400/460 V systems

Device rated power [kVA]	Switching frequency of power stage [KHz]	Rated current I _N [A] ²⁾	Rated current I _N [A] ³⁾	Peak current for intermittent mode 0 to 5 Hz [A]	Peak current for intermittent mode > 5 Hz [A]
1.5	4	2.2	2.2	4	4
	8	2.2	2.2	4	4
	12	1.6	1.6	1.8	2.9
	16	1.0	1.0	1.1	1.8
2.8	4	4.1	4.1	7.4	7.4
	8	4.1	3.6	7.4	7.4
	12	3.2	-	5.8	5.8
	16	2.4	-	4.3	4.3
3.9	4	5.7	5.7	10.3	10.3
	8	5.7	5.7	10.3	10.3
	12	4.1	-	7.4	7.5
	16	2.6	-	4.7	4.7
5.4	4	7.8	7.8	14	14
	8	7.8	7.8	14	14
	12	6.4	-	9.9	11.5
	16	5	-	7.8	9
6.9	4	10	10	18	18
	8	10	8.8	16.5	18
	12	8.1	-	10.1	14.5
	16	6.2	-	7.8	11
9.7	4	14	14	25	25
	8	14	12.2	21	25
	12	10.3	-	14.4	14.6
	16	6.6	-	9.2	11.9
11.8	4	17	17	31	31
	8	17	13.5	21.2	31
	12	12.5	-	14.4	22.5
	16	8	-	9.2	14.4
	power [kVA] 1.5 2.8 3.9 5.4 6.9 9.7	Device rated power [kVA] frequency of power stage [kHz] 1.5 4 8 12 16 2.8 4 8 12 16 3.9 4 8 12 16 5.4 8 12 16 6.9 4 8 12 16 9.7 4 8 12 16 11.8 4 8 12 16	Device rated power [kVA] frequency of power stage [kHz] rateu current l _N [A] ²) 1.5 4 2.2 1.5 12 1.6 16 10 1.0 2.8 4 4.1 2.8 4 4.1 3.9 4 5.7 1.6 16 1.0 3.9 4 5.7 1.6 2.6 5.7 3.9 12 4.1 2.6 4 7.8 5.4 8 7.8 16 2.6 5 6.9 4 10 12 8.1 6.4 16 5 6.2 9.7 4 14 12 6.6 10.3 16 6.6 17 11.8 8 17	Device rated power [kVA]frequency of power stage [kHz]Rated current $ _{N}[A]^{2})$ Rated current $ _{N}[A]^{3})$ 1.5 $\frac{4}{12}$ 2.2 2.2 1.5 $\frac{4}{12}$ 2.2 2.2 1.6 1.6 1.6 1.6 16 1.0 1.0 2.8 $\frac{4}{12}$ $\frac{4.1}{3.2}$ 2.8 $\frac{4}{12}$ $\frac{5.7}{2.4}$ 3.9 $\frac{4}{12}$ $\frac{5.7}{2.4}$ 5.4 $\frac{4}{12}$ $\frac{7.8}{5.7}$ 5.4 $\frac{4}{12}$ $\frac{7.8}{5.7}$ 6.9 $\frac{4}{12}$ $\frac{10}{5}$ 12 $\frac{4}{16}$ $\frac{10}{5}$ 6.9 $\frac{4}{12}$ $\frac{14}{14}$ 9.7 $\frac{4}{12}$ $\frac{17}{12}$ 11.8 $\frac{4}{12}$ $\frac{17}{12.5}$ 71.8 $\frac{4}{12}$ $\frac{17}{12.5}$	Device rated power [kVA]frequency of power stage [kHz]nateu current $ N[A]^2)$ nateu current $ N[A]^3)$ for intermittent mode 0 to 5 Hz [A]1.5 $\begin{array}{c} 4 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 4 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.6 \\ 1.0 \\ 1.1 \\ $

drive controller	Device rated power [kVA]	Switching frequency of power stage [kHz]	Rated current I _N [A] ²⁾	Rated current I _N [A] ³⁾	Peak current for intermittent mode 0 to 5 Hz [A]	Peak current for intermittent mode > 5 Hz [A]
CDD34.024- HF,Wx.x	16.6	4 8 12 16	24 24 19.5 15	24 24 - -	43 40 28.3 22	43 43 35 27
CDD34.032- HF,Wx.x	22.2	4 8 12 16	32 32 26 20	32 28 - -	58 40 29.1 22	58 58 47 36
Peak current for 30 s with drive controllers 2.4 to 32 A Cooling air temperature: 45 °C at power stage switching frequency 4 kHz 40 °C at power stage switching frequency 8, 12, 16 kHz ¹)With heat sink HS3 or additional cooling surface					²⁾ Mains voltage 3 x ³⁾ Mains voltage 3 x Motor cable length Mounting height 100 End-to-end mounting	: 460 V±10% 10 m 00 m above MSL

DE EN

A.2 Ambient conditions

Characteristic		drive controller		
Temperature	in operation	-1045 °C (BG1 BG5) with power reduction to 55 °C		
range	in storage	-25 +55 °C		
	in transit	-25 +70 °C		
Relative air hu	midity	15 85 %, condensation not permitted		
Mechanical strength to IEC 68-2-6	Vibration	0.075 mm in frequency range 10 57 Hz 1 g in frequency range 57 150 Hz		
	Device	IP20 (NEMA 1)		
Protection	Cooling method	Cold plate: IP20 Push-through heat sink: IP54 (315 kW)		
Touch protection	on	VBG 4		
Mounting height		up to 1000 m above MSL, above 1000 m above MSI with power reduction 1% per 100 m, max. 2000 m above MSL		
max. holding brake current 2 A to $T_U = 45^{\circ}$ C, derating 50 mA/°C to $T_{Umax} = 55^{\circ}$ C				
Voltage stress of the motor winding		typical slew rate 3 - 6 kV/μs		

A.3 Project planning notes, "Cold

	-,
	- 11
niat	.
piuu	

Subject			Project plann	ing notes		
Thermal connection to cooler	 Evenness of contact surface = 0.05 mm Roughness of contact surface = roughness factor 6.3 Coat area between drive controller ("cold plate" backing plate) and cooler with heat transfer compound (coat thickness 30-70μ). The temperature in the middle of the drive controller backing plate must not exceed 85 °C. 					
Distribution of power loss	Size BG 1/2 BG 3 BG 4 BG 5	Device rated [kVA] 1.0 to 3 5.4 to 6 9.7 to 1 16.6 to 2	power .9 .9 I.8	Hea appr appr appr	at sink ox. 65% ox. 70% ox. 75% ox. 80%	Housing approx. 35% approx. 30% approx. 25% approx. 20%
Active cooling area	Size BG 1 BG 2 BG 3 BG 4 BG 5	Device rated power [kVA] 1.0 to 1.6 2.2 to 3.9 5.4 to 6.9 9.7 to 11.8 16.6 to 22.2		asic area m] 193 218 303 303 303		b 165 200 260 215 300
Thermal resistance		Size BG 1 BG 2 BG 3 BG 4 BG 5	[k ¹ 1.0 t 2.2 t 5.4 t 9.7 to	ted power /A] o 1.6 o 3.9 o 6.9 o 11.8 o 22.2	active cooling R _{tt}	istance between g area and cooler [K/W] 0.05 0.05 0.03 0.02 0.015

Α

DE EN

A.4 Change in system load through use of a line choke

System load

	Without line choke	With line choke	Change
	7.3 kVA drive controller, mains impedance 0.6 mH	7.3 kVA drive controller, mains impedance 6 mH	Without line choke compared to with line choke
Voltage distortion (THD) ¹⁾	99 %	33 %	-67 %
Mains current amplitude	18.9 A	9.7 A	-48 %
Mains current effective	8.5 A	6.23 A	-27 %
Commutation notches referred to the mains voltage	28 V	8 V	-70%
Life of the DC-link capacitors	Nominal life	2 to 3 times nominal life	+100 to 200 %

Change in system load through use of a line choke with 4 % short circuit voltage based on the example of a 7.3 kVA drive controller CDD34.010-HF operating in the part load range

1) THD = Total Harmonic Distortion ($U_5 \dots U_{41}$)

Mains voltage asymmetry

	Without line choke			With line choke		
	7.3 kVA drive controller, mains impedance 0.6 mH		7.3 kVA drive controlle mains impedance 6 m		,	
Asymmetry of mains voltage	0 %	+3 %	-3 %	0 %	+3 %	-3 %
Mains current amplitude	18.9 A	25.4 A	25.1 A	9.7 A	10.7 A	11 A
Mains current effective	8.5 A	10.5 A	10.2 A	6.2 A	6.7 A	6.8 A

Effect of line choke with asymmetric mains voltage based on the example of a 7.3 kVA drive controller CDD34.010-HF operating in the part load range

Recommended:

The example shows that the benefits of a line choke with 4 % short-circuit voltage are multi-faceted. We therefore recommend that you use a line choke as a matter of course.

Line chokes are required:

- Where the drive controller is used in applications with disturbance variables corresponding to environment class 3, as per EN 61000-2-4 and above (hostile industrial environment).
- To comply with the limit values for variable-speed electric drives (standard EN61800-3 / IEC1800-3)
- With a dc-link between multiple drive controllers.

Characteristics of environment class 3 include:

- Mains voltage fluctuations > <u>+</u> 10% U_N
- Short-time interruptions between 10 ms and 60 s
- Voltage asymmetry > 3%

Environment class 3 typically applies where:

- a major part of the load is supplied by power converters (dc choppers or soft-start equipment)
- · welding machines are present
- · induction or arc furnaces are present
- large motors are started frequently
- · loads fluctuate rapidly.

1

DE EN

A.5	UL approbation	Measures to main	tain UL approb	ation		
		 Switch cabinet n level 2 is manda 		54 protection and con	tamination	
		2. The devices are	only usable in sy	stems with surge str	ength class III.	
		 Only UL approved fuses and circuit-breakers may be used. CDD32.xxx-HF : Mains fuses min. 250 V H or K5 CDD34.xxx-HF : Mains fuses min. 600 V H or K5 				
		4. The devices are of 5000 A.	usable in systen	ns with a maximum c	urrent capacity	
		be UL approved CDD32.xxx-HF	: Min. 300 V cabl	wer, motor and contro es (mains/motor), Cu es (mains/motor), Cu	75° C min.	
	Tightening torque o grounding lead terminal [Nm]	f Tightening torque of mains terminals [Nm]	Device	Wire cross-section	Mains fuse	
	0.5 0.6	0.5 0.6	CDD32.004-HF	AWG 16 N/M	10 A	
	0.5 0.6	0.5 0.6	CDD32.006-HF	AWG 14 N/AWG 16 M	10 A	
	0.5 0.6	0.5 0.6	CDD32.008-HF	AWG 14 N/AWG 16 M	20 A	
	0.5 0.6	0.5 0.6	CDD34.003-HF	AWG 16 N/M	10 A	
	0.5 0.6	0.5 0.6	CDD34.005-HF	AWG 16 N/M	10 A	
	0.5 0.6	0.5 0.6	CDD34.006-HF	AWG 16 N/M	10 A	
	0.5 0.6	0.5 0.6	CDD34.008-HF	AWG 14 N/M	15 A	
	0.5 0.6	0.5 0.6	CDD34.010-HF	AWG 14 N/M	15 A	
	0.5 0.6	0.5 0.6	CDD34.014-HF	AWG 12 N/M	20 A	
	0.5 0.6	0.5 0.6	CDD34.017-HF	AWG 12 N/M	25 A	
	1.2 1.5	1.2 1.5	CDD34.024-HF	AWG 10 N/M	30 A	
	1.2 1.5	1.2 1.5	CDD34.032-HF	AWG 8 N/M	50 A	

Table A.4

Attention: The drive controllers can typically be overloaded with 1.8 x I_N

Cable cross-sections - mains (N), motor (M)

for 30 s. The effective servo capacity utilization $(I_{eff.} \le I_N)$ must never be greater than I_N (rated current).

Minimum cross-section of the grounding lead to DIN VDE 0100 Part 540

Cross-section	PE mains connection
Mains power cable <10 mm ²	Grounding lead (PE) cross section of at least 10 mm ² or lay a second electrical conductor parallel to the existing grounding lead, because the operational leakage current is > 3.5 mA.
Mains power cable >10 mm²	PE conductor with cross-section of mains power cable - see VDE 0100 Part 540

Table A.5	Minimum cross-section of the grounding lead
-----------	---

A.6 Layout

Terminal	Explanation
X1	Power connections
X2	Control connections
Х3	Motor PTC connections
X4	PC/KP200 connection (RS232-interface)
X5	Encoder simulation/master encoder
X6	Resolver connection
Х7	Optical encoder connection
X8	UM-xxx module connection
X9	CM-xxx module connection

LUST Appendix B Index

Α

Air humidity, relative	A-8
Ambient conditions	A-8
Ambient temperature	2-7

В

Braking chopper	3-16
Braking resistor (RB)	3-16
Breakthrough for push-through heat sink	. 2-9

С

CARD menu 4-25	
Change in system load A-10	
Cold plate 2-5	
Connecting cable 2-6	
Connection	
Braking resistor 3-16	
Servocontroller 4-22	
Connection of the temperature sensor 3-7	
Control connections 3-17	
Cooling	
Motors / Motors with external ventilation 3-13	
Required with cold plate 2-7	
Current capacity A-4	

D

Dangers	1-1
Data set	
Loading into next servocontroller	4-5
Saving to a SmartCard	4-4
DC link	A-11
Diagnosis/Fault rectification	5-1
Digital scope function	4-19
Dimensional drawings	
Push-through heat sink	2-10

Appendix B Index

2-4
2-6
4-3
4-22

Е

Electrical specification 3-24, 3-27
EMC (Electromagnetic Compatibility) 1-1
EMC-compatible installation 2-3
Emergency Stop facility 1-2
Encoder connection 3-13
Encoder simulation 3-23
Master encoder input 3-23
Encoder simulation connection and signal description
3-24
Encoder simulation signals 3-23
ENPO 4-19
Error messages 5-3
Errors in power switching 5-5
Errors, resetting 5-4

F

Factory setting 5-	-6
Fault response 5-	-2
Feather key 4-1	8
Functions of the menus 4-2	24

G Gro

Grounding lead	
connection	3-4
Star configuration	3-4

Η

Hall-IC encoder	 3-12
Helpline	 5-3
HTL master encoder	 3-27

Icon	4-22
Intended use	. 1-2
Interference emission	. 3-3
Intermittent	. A-4
Isolation	3-21

Α

Κ

KeyPad	
KP200	4-24
Operation	4-24
KP200 display	. 5-3

L

LED	5-1
LEDs (H1,H2,H3)	5-1
Line choke	2-3, 3-14, A-10
Low voltage directive .	1-2
LUST encoder cables .	3-11

М

Mains connection 3-13
Mains filter 2-3, 3-15
Mains voltage asymmetry A-10
Master encoder 3-25
Measures for your safety 1-1
Mechanical installation 2-1
Menu structure 4-24
Motor connection 3-5
Motor filter 4-16
Motor phase connection 3-6
Motor temperature
Monitoring 3-7
PTC 3-7
Motor with plug connection 3-6
Motors with terminal boxes 3-7
Mounting
clearances 2-3
collar 2-8
height A-&
plate 2-3
seal 2-8
set CDD 2-2
variants 2-1
Mounting and cooling variants 2-1

Ν

Notes on operation	•••••	2-1
--------------------	-------	-----

0

Optical encoders	
Cable	3-10
Overview	. 3-2
KeyPad KP200	4-24
Menu structure, KP200	4-24

Ρ

PARA menu	4-25
Pin assignment 3-9,	
Positioning data	4-17
Power loss	. 2-8
Power stage enable	4-19
Project planning notes	
Cold plate	. A-9
Encoder cable	. 3-8
Protection	. A-8
Pulse mode	. A-4
Push-through heat sink (Dx.x	. 2-8

Q

Qualification, users	 1-1
Qualification, users	 1 - 1

R

Reinitialization	
Device5-	-6
Parameters 5-	-6
Resetting 5-	-4
Resolver 3-	-8
Resolver cable 3-	-9
Responseno 5-	-2
Responsibility 1-	-2

S

Safety	1-1, 4-15
Sequence programs	4-17
Serial commissioning	4-2
DriveManager	4-2

KeyPad	4-4
Serial number	3-3
Setting parameters	4-25
Shaft end	4-18
Sinus/Cosinus encoder	3-9
Slot X4	4-24
Specification	
Control connections	3-18
Motor temperature monitoring	3-7
Standard terminal assignment	3-20
Standards	1-2
Step response	4-21
Strength, mechanical	
surge strength class	A-12
Switching frequency	4-16

Т

Technical data	A-2
Temperature	2-7
Temperature range	A-8
Test run	
Thermal monitoring	3-3
Third-party motors	
Touch protection	
Trigger condition	
TTL encoder	. 3-3, 3-27

U

Unit for speed	4-8
User errors	5-5
KP200	5-5
SmartCard operation	5-5
User errors in KeyPad operation	5-5

۷

Voltage distortions	•••••	3-3
---------------------	-------	-----

W

Wall mounting	2-3
Wire cross-section	3-15
Write protection	4-26

Α

Appendix B Index

Hinweis zur EN 61000-3-2 DE	Notes on EN 61000-3-2 EN
(rückwirkende Netzbelastung durch Oberwellen) Unsere Frequenzumrichter und Servoregler sind im Sinne der EN61000 "professionelle Geräte", so daß sie bei einer Nennanschlußleistung ≤1kW in den Geltungsbereich der Norm fallen. Beim direkten Anschluß von Antriebsgeräten ≤1kW an das öffentliche Niederspannungsnetz sind entweder Maßnahmen zur Einhaltung der Norm zu treffen oder das zuständige Energieversorgungsunternehmen muß eine Anschlußgenehmigung erteilen. Sollten Sie unsere Antriebsgeräte als eine Komponente in ihrer Maschine/ Anlage einsetzen, dann ist der Geltungsbereich der Norm für die komplette Maschine/ Anlage zu prüfen.	(limits for harmonic current emissions) Our frequency inverters and drive controllers are "professional devices" in the sense of the European Standard EN 61000, and with a rated power of ≤1kW obtained in the scope of this standard. Direct connection of drive units ≤1kW to the public low-voltage grid only either by means of measurements for keeping the standard or via an authorization of connection from the responsible public utility. In case our drive units are used as a component of a machinery/ plant, so the appropriate scope of the standard of the machinery/plant must be checked.

Lust Antriebstechnik GmbH

Gewerbestrasse 5-9 • 35633 Lahnau • Germany Tel. +49 (0) 64 41 / 9 66-0 • Fax +49 (0) 64 41 / 9 66-137 Internet: http://www.lust-tec.de • e-mail: info@lust-tec.de

ID no.: 0998.00B.1-00 • 03/2005

We reserve the right to make technical changes.